Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-kappaB activity.
نویسندگان
چکیده
Abnormalities of dendritic cells (DCs) have been identified in type 1 diabetic patients and in nonobese diabetic (NOD) mice that are associated with augmented nuclear transcription factor (NF)-kappaB activity. An imbalance that favors development of the immunogenic DCs may predispose to the disease, and restoration of the balance by administration of DCs deficient in NF-kappaB activity may prevent diabetes. DCs propagated from NOD mouse bone marrow and treated with NF-kappaB-specific oligodeoxyribonucleotide (ODN) in vitro (NF-kappaB ODN DC) were assessed for efficacy in prevention of diabetes development in vivo. Gel shift assay with DC nuclear extracts confirmed specific inhibition of NF-kappaB DNA binding by NF-kappaB ODN. The costimulatory molecule expression, interleukin (IL)-12 production, and immunostimulatory capacity in presenting allo- and islet-associated antigens by NF-kappaB ODN DC were significantly suppressed. NF-kappaB ODN renders DCs resistant to lipopolysaccharide stimulation. Administration of 2 x 10(6) NF-kappaB ODN DCs into NOD mice aged 6-7 weeks effectively prevented the onset of diabetes. T-cells from pancreatic lymph nodes of NF-kappaB ODN DC-treated animals exhibited hyporesponsiveness to islet antigens with low production of interferon-gamma and IL-2. These findings provide novel insights into the mechanisms of autoimmune diabetes and may lead to development of novel preventive strategies.
منابع مشابه
Unaltered diabetes presentation in NOD mice lacking the vitamin D receptor.
OBJECTIVE Vitamin D deficiency increases risk for type 1 diabetes in genetically predisposed individuals, while high doses of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] prevent insulitis and diabetes in NOD mice. RESEARCH DESIGN AND METHODS Since 1,25(OH)(2)D(3) regulates gene transcription through the vitamin D receptor (VDR), we investigated the role of VDR in diabetes development by crea...
متن کاملElevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function.
We have recently demonstrated that dendritic cells (DC) prepared from nonobese diabetic (NOD) mice, a spontaneous model for insulin-dependent diabetes mellitus, exhibit elevated levels of NF-kappaB activation upon stimulation. In the current study, we investigated the influence of dysregulation of NF-kappaB activation on the APC function of bone marrow-derived DC prepared from NOD vs BALB/c and...
متن کاملTreatment effect of GABA on improve type one diabetes in NOD mice
Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...
متن کاملالقای سلولهای دندریتیک تولروژن موشی با تنظیم کاهشی ملکول کمک تحریکی CD40 با استفاده از وکتور لنتی ویروس
Induction of Tolerogenic Murine Dendritic Cells by Downregulating the Co-stimulatory Molecule of CD40 Using Lentivirus Vector Mahmoodzadeh A1, Pourfatollah AA1, Karimi MH2, Moazzeni SM1 1Dept. of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2Transplantation Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Correspond Aut...
متن کاملCD40 Knocked Down Tolerogenic Dendritic Cells Decrease Diabetic Injury
Background: Type-1 diabetes (T1D) is an autoimmune disease in which T lymphocytes destroy insulin-producing β-cells. Control of self-reactive T lymphocytes and recovery of diabetic injury is the end point of T1D. Objective: To investigate generation of tolerogenic dendritic cells (tolDCs) as an innovative method of diabetes therapy. Methods: Lentivirus vector production was achieved by GIPZ mou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 52 8 شماره
صفحات -
تاریخ انتشار 2003